Role of p66shc in renal toxicity of oleic acid.

نویسندگان

  • Istvan Arany
  • Jeb S Clark
  • Dustin K Reed
  • Luis A Juncos
  • Mehul Dixit
چکیده

BACKGROUND/AIMS Adult and childhood obesity is an independent risk factor in development of chronic kidney disease (CKD) and its progression to end-stage kidney disease. Pathologic consequences of obesity include non-esterified fatty acid-induced oxidative stress and consequent injury. Since the serine36-phosphorylated p66shc is a newly recognized mediator of oxidative stress and kidney injury, we studied its role in oleic acid (OA)-induced production of reactive oxygen species (ROS), mitochondrial depolarization and injury in cultured renal proximal tubule cells. METHODS Renal proximal tubule cells were used and treated with OA: ROS production, mitochondrial depolarization as well as injury were determined. Transcriptional effects of OA on the p66shc gene were determined in a reporter luciferase assay. The role of p66shc in adverse effects of OA was determined using knockdown, p66shc serine36 phosphorylation and cytochrome c binding-deficient cells. RESULTS We found that OA increased ROS production via the mitochondria - and to a less extent via the NADPH oxidase - resulting in ROS-dependent mitochondrial depolarization and consequent injury. Interestingly, OA also stimulated the promoter of p66shc. Hence, knockdown of p66shc, impairment its Ser36 phosphorylation (mutation of Ser36 residue to alanine) or cytochrome c binding (W134F mutation) significantly attenuated OA-dependent lipotoxicity. CONCLUSION These results offer a novel mechanism by which obesity may lead to renal tubular injury and consequently development of CKD. Manipulation of this pathway may offer therapeutic means to ameliorate obesity-dependent renal lipotoxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of p66shc in taxol- and dichloroacetic acid-dependent renal toxicity.

BACKGROUND/AIM Taxol and dichloroacetic acid (DCA) are anticancer agents with potential renal toxicity. Previously, we have shown that the Ser36-phosphorylated p66shc adaptor protein mediates renal toxicity of selected anticancer modalities through increasing production of intracellular reactive oxygen species and consequent mitochondrial depolarization. Here, we analyzed whether p66shc plays a...

متن کامل

Epigenetic modifiers exert renal toxicity through induction of p66shc.

BACKGROUND/AIMS Trichostatin A (TSA) and 5-azacytidine (5AZA) induce reactive oxygen species (ROS)-mediated injury in renal proximal tubule cells. Since TSA and 5AZA are activators of p66shc, we questioned whether p66shc may mediate renal toxicity of TSA- and 5AZA. MATERIALS AND METHODS Renal proximal tubule cells were treated with either TSA or 5AZA for 24 hours followed by treatment with 20...

متن کامل

Effects of Nigella sativa oil and ascorbic acid against oxytetracycline-induced hepato-renal toxicity in rabbits

Objective(s):  Oxytetracycline (OTC) is a broad spectrum antibiotic widely used for treatment of a wide range of infections. However, its improper human and animal use leads to toxic effects, including hepatonephrotoxicity. Our objective was to evaluate protective effects of Nigella sativa oil (NSO) and/or ascorbic acid (AA), against OTC-induced hepatonephrotoxicity in rabbits. Materials and Me...

متن کامل

The protective effects of saffron stigma alcoholic extract against vincristine sulfate drug-induced renal toxicity in rat

Introduction: Vincristine (VCR) is potential anti-cancer drug that is highly toxic for renal tissue. This study aimed to evaluate the protective effect of alcoholic extract of saffron stigma against vincristine renal toxicity in male rats. Methods: A total number of 50 rats were randomly divided into 10 groups. Different doses of VCR (0.25, 0.5 and 0.75mg/kg) and saffron (0.5 and ...

متن کامل

p66SHC-mediated mitochondrial dysfunction in renal proximal tubule cells during oxidative injury.

Mitochondrial dysfunction is involved in pathopysiology of ischemia-reperfusion-induced acute kidney injury (AKI). The p66shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction, which might play a role in AKI-induced renal tubular injury. Oxidative stress-mediated Serine36 phosphorylation of p66shc facilitates its transportation to the mitochondria where it oxidizes cyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of nephrology

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2013